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A CLASS OF EXACT SOLUTIONS WITH A UNIFORM DEFORMATION IN GAS DYNAMICS* 

S.A. POSLAVSKII and I.S. SHIKIN 

A new exact solution is obtained describing the motion of a rotating gas 
ellipeoid in which the ratio of the semiaxes remains constant (with an 
adiabatic index of S/3). The structure of this solution is in a certain 
sense similar to the structure of the solutions for an ellipsoid of a 
uniform ideal incompressible selfgravitating liquid, obtained in papers 
on the theory of equilibrium figures (see 1, 2/). 

The adiabatic motions of an ideal gas with a non-uniform deformation were first studied 
by Sedov /3, 4/, who obtained an exact non-stationary solution in the uniform case. 
Ovsyannikov /5/ showed that in a more general formulation the problem reduces to a set of 
nine second-order ordinary differential equations. This system allows seven first integrals 
connected with the conservation of energy and momentum of the gas cloud and "freezing in" of 
the vortex /5, 6/. An eighth integral was obtained in /7/ with an adiabatic index of S/3, 
and an exact solution oftheproblem of the dispersion of a non-rotating gas ellipsoid of 
rotation in a vacuum was found. The problem of the motion of a rotating spheroid was consid- 
ered in /8/. A qualitative investigation in the general case of motion with a uniform deform- 
ation of a triaxial gaseous ellipsoid was carried out in /9/.** 

1. Solutions with non-uniform deformation are characterized by a linear depedence of 
the Euler coordinates on the Lagrangians 

ra = MfXR (Q SP (1.1) 

Here and hence for the Greek subscripts take values from 1 to 3, and summation is 
carried out over the repeated indices. 

For an ellipsoidal distribution of the density and pressure, the adiabatic motions of a 
gas are described by the equations 

M,*= -+M-l)B"; D=detM, y=+, s=const (1.21 
u 

The density and pressure are given by the equations 

p P$) , p=+ po(cr)=po(0) i-~@(h)dh. u=+(&” + &? + &‘) (1.3) 
" 

where pO(o) is an arbitrary function. Fora finite ellipsoid with boundaries &' + 52 $ Eat = 
1 the function p,,(o) vanishes outside it. 

If E<O, the pressure falls with distance from the centre of the ellipsoid; if E>l), 
it increases. The first case may correspond, for example, to the motion of a gas cloud in a 
vacuum, and the second may correspond to the motion of an ellipsoid acted upon by an external 
pressure. 

The matrix M can be represented in the form 

M = Ol-‘Wz (1.4) 

*Prikl.Matem.Mekhan.,48,1,137-142,1984 
**A single parametric family of exact solutions for a gas spheroid with a constant ratio of 
the semiaxes was obtained by Bogoyavlenskii in a paper entitled "The oscillatory expansion of 
a gas cloud in a vacuum", Preprint of the Institute of Theoretical Physics Academy Of Sciences 
of the USSR, Chernogolovka, 1975. 
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where A =IIAafi /I is a diagonal matrix, and Q1 = 11 @A 1l-Q~ = 11 @$I/ are orthogonal matrices. 
The components A,, are the lengths of the principle semiaxes of the gas ellipsoid, Q1 defines 
the orientation of these axes with respect to a fixed Euler system of coordinates, and the 
matrix Qs represents the rotation of the principle axes of the ellipsoid in a space of 
Lagrangian coordinates. Below we will consider the solutions for which 

A aR = l\ad (t) &zfi (1.5) 

where h, (a = 1, 2, 3) are positive constants, &, is the Kronecker delta, and there is no sum- 
mation over a. When condition (1.5) is satisfied the ratio of the semiaxes of the gas ellip- 
soid does not change with time. 

We will further assume that the adiabatic index y ='i3. The integrals of (1.2), obtained 
in /5-7/, can be written in the form 

e,s,J&Mgo = J,, eadC#og = & (1.6) 

(1.7) 

Here easv are the components of a perfectly antisymmetric unit pseudo-tensor (elzs = 1); 
Ja, K, (a = 1, 2, 3), E, C,, C, are constants. The integrals (1.6) and (1.7) in general are 
insufficient to integrate (l-2), but when condition (1.5) is satisfied its solution can be 
written in quadratures. 

2. It follows from (1.1) that 

ua I= x; = M& (M-‘)Bv xv (2.1) 

We will introduce a fixed Cartesian system of coordinates X,, X,, and X8, the axes of 
which are directed along the principal axes of the ellipsoid. We will fix the instant of time 
t* and choose the Euler and Lagrangian coordinates so that their axes at this instant coincide 
withthecorresponding axes of the movable system 

xa (t*) = X, (t*); B = X, (t*)/(M (t*)) (2.2) 

Then Q1 (t*) and Ql(t*) will be unit matrices, and (2-l), taking (1.4) and (1.5), can 
be rewritten in the form /2/ 

(2.3) 

(in the frst formula there is no summation over a ). Here 0 is the vector of the instantane- 
ous angular velocity of rotation of the system of principal axes of the ellipsoid in fixed 
space, and 6 is the vector of the vorticity of the motion of the gas with respect to this 
system. 

Using (1.4)-(1.6) we obtain 

(2.4) 

(a, P, Y form a cyclic permutation from 1, 2 and 3). 
We will calculate the derivatives d’K,ldt, ZJ,ldt connected with the change in the choice 

of coordinates (2.2) with time. It can be seen from (1.1) and (1.6) that K. are the compon- 
ents of the constant axial vector in the space of Lagrangian coordinates, while Ja are the 
components of the constant axial vector in Euler coordinates. The system of principal axes 
of the ellipsoid at the instant t* is rotated in fixed space with instantaneous angular veloc- 
ity - e,B,Q$,:‘)(t*)/2, while in the space of Lagrangian coordinates it is rotated with instantane- 

ous angular velocity e,~vQ$ (t*)/2. Hence, 

d’K,/dt = Qg’ (t*) K,, d’J,/dt = Q$ (t*) JO 

We will introduce the following notation: 

G,=- 
I\‘,+J, R,-JJ, 

2 (kg - av)* ’ 
H, --_ 

2 @p T “J (2.5) 
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(=L, I-L Y form a cyclic permuation from 1, 2 and 3). 
Then, for the quantitites G,and H, we will have the following system of equations: 

d'c, 
dr =eai3y 

CBGy(hR- ;i,- 21,) - HpHv(ka f h, + 2,) 
C!(k, - h,) 

d'H, 
7 =eaf$' 

HBG,(hg-A,--31,)-HH,GB(hp- h, +2X,) 

2 ($3 - $) 

(2.6) 

(dt = dtld2 and there is no summation over CL ). 
For this choice of coordinates (2.2), system (1.2), taking (1.5) into account, can re- 

written in the form (V = s/3) 

Q1"A + A" i >lQz" I Z(Q,'A' A Q1';4Q1' + .4'Qz')= - CA-'/WI 12.7) 

Since Qa&“(t*) = Q&) (t*) =&q, and for any orthogonal matrix p the product 
the transposed matrix of Q), and of course, (Q'Q')' = Q-Q’ + Q-O” 

QQ' (Q' is 
are antisymmetric matrices, 

the following equation holds: 

Qb;b”‘(t*)=--xQ$‘(t*)Q$‘(t*) @=1,3,3;n=l,") (2.8) 
B 

Using (l-5), (2.3), and (2.8), the diagonal components of the matrix equation (2.7) can 
be written in the form 

The remaining two equations are obtained by cyclic permutation of the indices. 
It follows from the last integral in (1.8) and condition (1.5) that 

d36’ = (LW, - C,V4)/(h,” + &z + X3*) = c3 

Using (2.3)-(2.5) and (2.9) the last equation can be written in the form 

(2.10) 

(2.11) 

(a, p, y form a cyclic permutation from 1, 2 and 3). 
Riemann showed that the solutions of a system of the form (2.6) satisfying relations of 

the form (2.11), can only be singular points, for which the right sides of (2.6) vanish. 
Moreover, if not all hb(fJ =1,2,3) are equal to one another, an index ct exists such that G,= 
H,_=Q. Suppose, to be specific, that c=l. Then ~l=&eaO. The vectors 6 and n lie in 
one of the principal planes of the ellipsoid. We will put Lao== d2k 9," = dzS2,. It follows 
from (2.3)-(2.5) and the fact that the right sides of (2.6) are equal to zero, that the com- 
ponents of the vectors r, 52 in X, coordinates do not change during motion. 

3. Suppose ce = 8,=0, i.e. the gas ellipsoid rotates around its own axis. The case 
when h, = h, was considered in /8/. Hence, we will assume that A,#&. 

Using (2.9) we obtain 

(3.1) 

The qantities R,, R_ must be non-negative. 
ered h,h, > hsa and E< 0, i.e. the pressure falls 
soid. Integrating (3.2) we obtain 

E (1 - f")Z 
(h,b2)2'*hjlad$ 

f d,' "' ; 
3 

13.2) 

Hence, in the solutions of the type consid- 
with distance from the centre of the ellip- 

do=d(tp), d’(t,)=O (3.3) 

The general solution of (1.2) in the case considered has the form 

M = S,Q,AQ,S, 

1) cos 'P - sin CP 0 I/ jl cm 21, -sin* 011 
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?.,A,! 
9 = 1,” ~. 1;’ s +t 

I 

Here S,and S,are arbitrary constant orthogonal matrices, A has the form (1.51, d is found 
from (3.1), and ;a' and 8," are found from (3.1). 

4. Suppose now that Q,# 0, S&#O. Without loss of generality we will assume that 
& = 1. The fact that the right sides of (2.6) are equal to zero can be written in the form 

/2/ 

(4.1) 

Hence 

On the other hand, from (2.9), using (4.1)) we obtain 

(4.2) 

(4.3) 

When solving the algebraic equations (4.2) and (4.3) we can express t", 62," (a =2,3) in 
temS Of E, h2, ha. 

Using (2.9), (4.1), and (4.3)) we will calculate the value of the constant CJ on the 
right side of (2.10). We obtain 

G= L((h12 $ hs2 -?b&s2-4) 
3(&)@" 

(4.4) 

After integrating (2.10) we obtain d(t) I similar to (3.3). 
The general solution of (1.2) in this case has the form (3.4), but now 

I 

oJscp -sincp 0 

QI= sincp cosrp 0 ’ 0 

Je 

1 0 0 

cosa -sina 
0 0 1 0 sina cesa 1 

Qz= 0 

I 

1 0 0 

cos(5 sinp . sin* 
0 -sinp cosg II 

cos(li -sin9 0 

cosq 0 
0 0 1 I 

‘p= s 
+t, I#+& 

9” = [(L!,“)a + (i-&“)y, r= [(&-+)1 + (&5P0)z11” 

a=arctgQ.O, 
Q.9” B = arctg ( ~((~~&))~~~ ) 

It should be noted that if the matrixM(t)is the solution of (1.2), the transposedmatrix 
AI'(~) will also be a solution. 

The set of algebraic equations (4.2) and (4.3) is not solvable for possible values of 

e, A,, h,. Without loss Of generality we can confine ourselves to considering the case when 
?b\? ' h,. It follows from (4.1) and the fact that the expressions under the root signs in 
(4.2) are non-negative that there are two possibilities 

Assuming that the signs on the right and left sides of (4.3) must be same, we obtain as 
a result three regions of admissible values of a, x2, A2 (see the figure) 

a) h,-&>2; &>&>2;~<0 (regionA) 

b) h, - h, > 2; h, 2 12 1,; e > 0 (region B) 

C) k, + ir, < 2; ?"* > 1 > h,; E -c 0 (region C) 
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In the solutions corresponding to cases a), and ci, the 
pressure falls with distance from the centre of the gas ellip- 
soid. These solutions do not have any singularities, since 
63d"=&>O. In case b) the cloud moves due to the action of 
the external pressure, which varies with time as given by (1.3). 

As can be seen from (4.4) ,C, vanishes along the line L, 

specified by the equation 

h,2 + h,2 - h,?h,' - 4 = 0 

and splits the region B into two subregions (see the figure). 
For a point lying in region B above the line L,Cs<O, i.e. a 
singularity (d=O) must necessarily occur in the solutions 
coxresponding to it, namely, a state in which the volume of the 
cloud vanishes, while the density and pressure become infinite. 
For points lying below L,. Cs>O, i.e. d does not vanish; the 
rotation and internal vorticity of the gas cloud prevents its 
collapse. 

A complete picture in the (&,&a) plane is obtained after symmetric reflection of regions 
A, B, and C in the straight line & = &+ and of the line L into regions A', B', and C' 
and the line L' respectively. 
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RELATIVISTIC PRANDTL- MEYER FLOW* 

N.I. KOLOSNITSYN and K.P. STANWKOVICH 

The exact solution of the equations of relativistic gas dynamics describing 
plane steady-state flow, depending only on the angular variable, is 
investigated. The well-known Prandtl-Meyer solution is obtained in the 
non-relativisitic limit. 

The problem of constructing relativistic Prandtl-Meyer flow has been 
considered in /l-3/. A solution was obtained in /l/, by direct integra- 
tion of the equations, describing the limiting case of ultrarelativistic 
flow. In /2, 3/, to obtain relativistic Prandtl-Meyer flow, the method 
of replacement of variables proposed in /4/ was used, by means of which 
the equations of relativistic hydrodynamic were reduced to Newtonian form 
for a certain auxiliary gas with a variable isentropy index. Using this 

*Prikl.Matem.Hekhan.,48,1,143-145,1984 


